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Figure 7: Model comparison between the empirical model, traditional model, 
and GMM  on data from Saskatoon (high-latitude).
Note: we exclude data from range gate <= 10.

Figure 8: Model comparison between the empirical model, traditional model, 
and GMM  on data from Christmas Valley West (mid-latitude).

Gaussian Mixture Model (88.44% agree with empirical)

Traditional Model (91.63% agree with empirical)

Empirical Model
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Gaussian Mixture Model (77.73% agree with empirical)

Traditional Model (89.66% agree with empirical)

Empirical Model
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Beam 1
SAS 07/Feb/2018

Beam 4
CVW 07/Feb/2018

GMM vs. Empirical / Traditional Models:
➢ Often performs better than the empirical and traditional models (Figures 7 and 8, see black arrows)

○ GMM classifies scatter by clusters in time and space, which is an advantage
➢ Works on high-latitude (Figure 7) and mid-latitude (Figure 8) radars
➢ Works without elevation angle or phi0
➢ Preserves data resolution, no filtering

GMM Output Distributions (Mid-latitude):
➢ Velocity appears Gaussian (Figure 9), 

reasonable to fit using Gaussian model
➢ Range gate appears to be a mixture of 

Gaussians (Figure 10), reasonable to fit using 
Gaussian Mixture (3 - 4 components)

➢ Range gate graph shows GMM is 
misclassifying some IS as GS (Figure 10, blue 
arrows)
○ This IS may be low-velocity
○ We need to adjust velocity threshold, or 

let the majority cluster at that range gate 
dictate the classification

Saskatoon, Feb. 7 2018 (High-latitude)

Christmas Valley West, Feb. 7 2018 (Mid-latitude)

ReferencesConclusions
➢ Gaussian Mixture Model provides an alternative to:

○ The depth-first search model - GMM maintains high 
data resolution and works at mid-latitudes

○ The empirical model - GMM can work without 
elevation angle

○ The traditional model - GMM preserves GS

➢ Future research steps:
○ Statistically validate the results in a more rigorous way 
○ Show that GMM’s model can accurately capture the 

distribution of all features and does not exclude 
outliers

○ Work towards a module that can be distributed to the 
community to aid in scatter identification
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Results (continued)

Code: github.com/vtsuperdarn/clustering_superdarn_data

Previous methods of classifying backscatter:
➢ Traditional model [Blanchard et. al. 2009]

○ v < 33.1 m/s + 0.139w − (0.00133 s/m)w2 
○ Biased to classify low-velocity ionospheric scatter 

(IS) as ground scatter (GS)
○ Problem: Classifies data point-by-point, does not 

consider clusters of data
○ Problem: Bias in low-velocity IS

➢ Depth-first search clustering model [Ribiero et. al. 2011]
○ Do depth-first search to cluster data in time/space
○ Classify cluster as GS or IS based on velocity ratio
○ Reduces bias so that more low-velocity IS is 

correctly classified
○ Problem: Uses boxcar filtering, which reduces spatial 

and time resolution

➢ Empirical model [Burrell et. al. 2015]
○ Based on elevation angle and virtual height model
○ Problem: Requires reliable elevation angle 

measurements, which are often unavailable
○ Problem: Only considers spatial variations along a 

single beam and time

Introduction

Figure 6: Velocity distribution of scatter 
classified as IS by the traditional method 
(dashed line) and the Ribiero depth-first 
search method (solid line).

Results 
GMM has Low Bias:
➢ Applied GMM and plotted |velocity| of scatter classified as IS and 

GS (Figure 5) 
○ Curves are smooth with a small bump in IS around 30 m/s

➢ Comparison: Traditional method shows strong bias to miscategorize 
low-velocity IS (Figure 6, dashed line)

➢ Comparison: Ribiero depth-first search method shows low bias, 
performs similarly to GMM (Figure 6, solid line)
○ Bump at 15 m/s caused by the high / low velocity threshold

Methodology 

Gaussian Mixture Model trained 
on 2 features

Gaussian Mixture distribution 
with 3 components

Figure 2: Example GMM results on 2 
features with 3 clusters.

Figure 1: A Gaussian Mixture with 3 
components. 
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Gaussian Mixtures:
➢ Composed of several 

Gaussian distributions 
added together (Figure 1) 

➢ Each distribution is called a 
component

GMM:
➢ Learn a mean and 

covariance matrix for each 
component, based on how 
well it fits the data

➢ Number of components is 
defined by the programmer

➢ Components are called 
‘clusters’

➢ Unsupervised learning - no 
knowledge of ground truth.

➢ Figure 2 - example output 
of GMM on 2 features

Our Method:
➢ Use 7 features: velocity, spectral 

width, power, phi0, time, range 
gate, beam
○ Determined best features by 

training a decision tree on the 
data using empirical method as 
‘ground truth’ (Figure 3)

➢ Create 6-30 clusters on 1 day of 
SuperDARN data

➢ Classify each cluster as IS or GS 
based on:
○ |median vel| > 15 m/s

■ Threshold was determined 
by trial and error

Methodology  (continued)

Parameters to Tune:
➢ Covariance type
➢ Number of clusters
➢ Velocity threshold

Figure 4: Number of clusters vs. BIC score 
for model fit to spectral width and 
velocity.
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Figure 9: Velocity density for 
the full set of scatter combined, 
compared to scatter classified 
by GMM.

Figure 10: Range gate density 
for the full set of scatter 
combined, compared to scatter 
classified by GMM.
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Figure 5: Velocity distribution of scatter 
classified as GS and IS by GMM. 
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|Velocity| distribution after GMM 
classification

Figure 3: Features ordered by importance 
using a decision tree.
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|Velocity| distribution of IS [Ribiero et. al. 2011]

Evaluating Model Quality:
➢ Use Bayes Information Criterion 

(BIC), a statistical measure of 
inverse ‘goodness of fit’ (less is 
better)
○ BIC includes a penalty term to 

avoid overfitting
➢ 5-10 clusters works for 1-2 

features - more is needed for all 7 

Goals:
➢ Preserve data resolution
➢ Get clean GS and IS data
➢ Cluster similar data the way an expert human would

Solution:
➢ Apply a Gaussian Mixture Model (GMM)


