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Center for Space Science and Engineering Research

Previous methods of classifying backscatter:
> Traditional model [Blanchard et. al. 2009]
o v<33.1m/s+0.139w — (0.00133 s/m)w"
o Biased to classity low-velocity ionospheric scatter
(IS) as ground scatter (GS)
o Problem: Classifies data point-by-point, does not
consider clusters of data
o Problem: Bias in low-velocity IS

> Depth-first search clustering model [Ribiero et. al. 2011]
o Do depth-first search to cluster data in time/space
o Classity cluster as GS or IS based on velocity ratio
o Reduces bias so that more low-velocity IS is
correctly classified
o Problem: Uses boxcar filtering, which reduces spatial
and time resolution

> Empirical model [Burrell et. al. 2015]
o Based on elevation angle and virtual height model
o Problem: Requires reliable elevation angle
measurements, which are often unavailable
o Problem: Only considers spatial variations along a
single beam and time

Goals:

> Preserve data resolution

> Get clean GS and IS data

> Cluster similar data the way an expert human would

Solution:
> Apply a Gaussian Mixture Model (GMM)

Gaussian Mixtures: Gaussian Mixture distribution

> Composed of several with 3 components

Gaussian distributions
added together (Figure 1)
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covariance matrix for each
component, based on how
well it fits the data

> Number of components is
defined by the programmer

> Components are called
‘clusters’

> Unsupervised learning - no
knowledge of ground truth.

> Figure 2 - example output
of GMM on 2 features

Figure 1: A Gaussian Mixture with 3
components.

Gaussian Mixture Model trained
on 2 features

Figure 2: Example GMM results on 2
features with 3 clusters.

Our Method:
> Use 7 features: velocity, spectral
width, power, phi0, time, range
gate, beam
o Determined best features by
training a decision tree on the
data using empirical method as
‘eround truth’ (Figure 3)
> Create 6-30 clusters on 1 day of
SuperDARN data
> C(lassify each cluster as IS or GS
based on:
o |medianvel| >15m/s
m Threshold was determined
by trial and error

Parameters to Tune:
> (Covariance type

> Number of clusters
> Velocity threshold

Evaluating Model Quality:

> Use Bayes Information Criterion
(BIC), a statistical measure of
inverse ‘goodness of fit” (less is
better)
o BIC includes a penalty term to

avoid overfitting

> 5-10 clusters works for 1-2

features - more is needed for all 7

GMM has Low Bias:

Feature Importance (out of 1.0)
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Figure 3: Features ordered by importance
using a decision tree.

Inverse goodness of model fit
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Figure 4: Number of clusters vs. BIC score
for model fit to spectral width and
velocity.

> Applied GMM and plotted |velocity | of scatter classified as IS and

GS (Figure 5)

o Curves are smooth with a small bump in IS around 30 m/s

> Comparison: Traditional method shows strong bias to miscategorize
low-velocity IS (Figure 6, dashed line)

> Comparison: Ribiero depth-first search method shows low bias,
performs similarly to GMM (Figure 6, solid line)
o Bump at 15 m/s caused by the high / low velocity threshold

| Velocity | distribution after GMM
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Figure 5: Velocity distribution of scatter
classified as GS and IS by GMM.

| Velocity | distribution of IS [Ribiero et. al. 2011]

R Old Method Points = 1,19207e+06 New Method Points = 1.98121e+06
=10 T T T T T T T T T T T T T T T | T T v

Number of Points

o 20 40 80 80 100
V|, m/s

Figure 6: Velocity distribution of scatter
classified as IS by the traditional method

(dashed line) and the Ribiero depth-first
search method (solid line).

GMM vs. Empirical / Traditional Models:
Often performs better than the empirical and traditional models (Figures 7 and 8, see black arrows)
o GMM classifies scatter by clusters in time and space, which is an advantage
Works on high-latitude (Figure 7) and mid-latitude (Figure 8) radars

>

YVY

Works without elevation angle or phi0
Preserves data resolution, no filtering

Saskatoon, Feb. 7 2018 (High-latitude)

Beam 1

GMM Output Distributions (Mid-latitude):
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Figure 7: Model comparison between the empirical model, traditional model,
and GMM on data from Saskatoon (high-latitude).
Note: we exclude data from range gate <= 10.

Christmas Valley West, Feb. 7 2018 (Mid-latitude)

Beam 4
Empirical Model CVW 07/Feb/2018

>

o > Velocity appears Gaussian (Figure 9),

reasonable to fit using Gaussian model
Range gate appears to be a mixture of
Gaussians (Figure 10), reasonable to fit using
Gaussian Mixture (3 - 4 components)

Range gate graph shows GMM is
misclassifying some IS as GS (Figure 10, blue

arrows)

o This IS may be low-velocity

o We need to adjust velocity threshold, or
let the majority cluster at that range gate
dictate the classification
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Figure 8: Model comparison between the empirical model, traditional model,
and GMM on data from Christmas Valley West (mid-latitude).

O

The depth-tirst search model - GMM maintains high
data resolution and works at mid-latitudes
The empirical model - GMM can work without

elevation angle
The traditional model - GMM preserves GS

> Future research steps:

O
O

O

Statistically validate the results in a more rigorous way
Show that GMM’s model can accurately capture the
distribution of all features and does not exclude
outliers

Work towards a module that can be distributed to the
community to aid in scatter identification
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Figure 9: Velocity density for
the full set of scatter combined,

compared to scatter classified
by GMM.

> Gaussian Mixture Model provides an alternative to:
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Figure 10: Range gate density
for the full set of scatter

combined, compared to scatter
classified by GMM.
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